Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace Wavelet Transform
نویسندگان
چکیده
The monogenic signal is the natural 2-D counterpart of the 1-D analytic signal. We propose to transpose the concept to the wavelet domain by considering a complexified version of the Riesz transform which has the remarkable property of mapping a real-valued (primary) wavelet basis of L(2) (R(2)) into a complex one. The Riesz operator is also steerable in the sense that it give access to the Hilbert transform of the signal along any orientation. Having set those foundations, we specify a primary polyharmonic spline wavelet basis of L(2) (R(2)) that involves a single Mexican-hat-like mother wavelet (Laplacian of a B-spline). The important point is that our primary wavelets are quasi-isotropic: they behave like multiscale versions of the fractional Laplace operator from which they are derived, which ensures steerability. We propose to pair these real-valued basis functions with their complex Riesz counterparts to specify a multiresolution monogenic signal analysis. This yields a representation where each wavelet index is associated with a local orientation, an amplitude and a phase. We give a corresponding wavelet-domain method for estimating the underlying instantaneous frequency. We also provide a mechanism for improving the shift and rotation-invariance of the wavelet decomposition and show how to implement the transform efficiently using perfect-reconstruction filterbanks. We illustrate the specific feature-extraction capabilities of the representation and present novel examples of wavelet-domain processing; in particular, a robust, tensor-based analysis of directional image patterns, the demodulation of interferograms, and the reconstruction of digital holograms.
منابع مشابه
Wavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملLinearized Riesz transform and quasi-monogenic shearlets
The only quadrature operator of order two on L2(R) which covaries with orthogonal transforms, in particular rotations is (up to the sign) the Riesz transform. This property was used for the construction of monogenic wavelets and curvelets. Recently, shearlets were applied for various signal processing tasks. Unfortunately, the Riesz transform does not correspond with the shear operation. In thi...
متن کاملColor monogenic wavelet representation based on a tensor-like use of the Riesz transform : application to image coding
We propose a new extension of monogenic analysis to multi-valued signals like color images. This generalization is based on an analogy between the Riesz transform and structure tensors and takes advantage of the well defined vector differential geometry. Our color wavelet transform is non-marginal and its coefficients separated into amplitude, phase, orientation and local color axis have intere...
متن کاملIsotropic and Steerable Wavelets in N Dimensions. A multiresolution analysis framework for ITK
This document describes the implementation of the external module ITKIsotropicWavelets, a multiresolution (MRA) analysis framework using isotropic and steerable wavelets in the frequency domain. This framework provides the backbone for state of the art filters for denoising, feature detection or phase analysis in N-dimensions. It focus on reusability, and highly decoupled modules for easy exten...
متن کاملDirectional Multiscale Amplitude and Phase Decomposition by the Monogenic Curvelet Transform
We reconsider the continuous curvelet transform from a signal processing point of view. We show that the analyzing elements of the curvelet transform, the curvelets, can be understood as analytic signals in the sense of the partial Hilbert transform. We then generalize the usual curvelets by the monogenic curvelets, which are analytic signals in the sense of the Riesz transform. They yield a ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2009